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Abstract

The model of generalized thermo-elastic plane waves under the effect of rotation is studied using the theory of
thermo-elasticity recently proposed by Green and Lindsay. The normal mode analysis is used to obtain the exact
expressions for the temperature distribution, the displacement component and thermal stress. The resulting formulation
is applied to two different concrete problems. The first deals with a thick plate subjected to a time-dependent heat source
on each face. The second concerns the case of a heated punch moving across the surface of a semi-infinite thermo-elastic
half-space subject to appropriate boundary conditions. Numerical results are given and illustrated graphically for each
problem. Comparisons are made with the results predicted by the coupled theory and with the theory of generalized
thermo-elasticity with two relaxation times in the absence of rotation.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years considerable interest has been shown in the study of plane thermo-elastic wave propa-
gation in a non-rotating medium. The classical theory of thermo-elasticity is based on Fourier’s law of heat
conduction, which predicts an infinite speed of propagation of heat. This is physically absurd and many
new theories have been proposed to eliminate this absurdity.

Two generalizations to the coupled theory were introduced. The first is due to Lord and Shulman (1967),
who obtained a wave-type heat equation by postulating a new law of heat conduction to replace the
classical Fourier’s law. This new law contains the heat flux vector as well as its time derivative. It also
contains a new constant that acts as a relaxation time. Since the heat equation of this theory is of the wave
type, it automatically ensures finite speeds of propagation for heat and elastic waves. The remaining
governing equations for this theory, namely, the equations of motions and constitutive relations, remain the
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Nomenclature
Ay 1 Lame’s constants
0 density
Cr specific heat at constant strain
t time
T absolute temperature T
T, reference temperature chosen so that <1
Oij components of stress tensor ©
& components of strain tensor
u; components of displacement vector
Q the rotation
k thermal conductivity
& A+2p
o
15 \/g velocity of transverse waves
g A+2p
u
T, v two relaxation times
e (%> + <@), the dilatation
Ox dy
o coefficient of linear thermal expansion
s (3244 2u)oy
e V*To/pCr(4+ 2p)
Mo pCr/k

same as those for the coupled and the uncoupled theories. This theory was extended by Dhaliwal and
Sherief (1980) to general anisotropic media in the presence of heat sources. Sherief and Dhaliwal (1981)
solved a thermal shock problem. Both these problems are valid for short times. Recently, Sherief and Ezzat
(1994) obtained the fundamental solution for this theory that is valid for all times.

The second generalization to the coupled theory of thermo-elasticity is what is known as the theory of
thermo-elasticity with two relaxation times or the theory of temperature-rate-dependent thermo-elasticity.
Miiller (1971), in review of the thermo-dynamics of thermo-elastic solids, proposed an entropy production
inequality, with the help of which he considered restrictions on a class of constitutive equations.

A generalization of this inequality was proposed by Green and Laws (1972). Green and Lindsay (1972)
obtained an explicit version of the constitutive equations. These equations were also obtained indepen-
dently by Suhubi (1975). This theory contains two constants that act as relaxation times and modifies all the
equations of the coupled theory, not only the heat equation. The classical Fourier’s law of heat conduction
is not violated if the medium under consideration has a center of symmetry. Erbay and Suhubi (1986)
studied wave propagation in finite cylinders. Ignaczak (1985) studied a strong discontinuity wave and
obtained a decomposition theorem for this theory (Ignaczak, 1978). Dhaliwal and Rokne (1989) solved a
thermal shock problem.

Using the Green—Lindsay theory, Agarwal (1979a,b) studied respectively thermo-elastic and magneto-
thermo-elastic plane wave propagation in an infinite non-rotating medium. In a paper by Schoenberg and
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Censor (1973), the propagation of plane harmonic waves in a rotating elastic medium without a thermal
field has been studied. It was shown there that the rotation causes the elastic medium to be dispersive and
an isotropic. Ezzat and Othman (2000) have established the model of the two-dimensional equations of
generalized magneto-thermo-elasticity with two relaxation times in a perfect conducting medium without
rotation.

It appears that little attention has been paid to the study of propagation of plane thermo-elastic waves in
a rotating medium. Since most large bodies like the earth, the moon and other planets have an angular
velocity it appears more realistic to study the propagation of plane thermo-elastic or magneto-thermo-
elastic waves in a rotating medium with thermal relaxation. Using the Lord-Shulman theory, Roy
Choudhuri and Debnath (1983a) studied the propagation of plane harmonic waves in an infinite con-
ducting thermo-elastic solid permeated by a primary uniform magnetic field when the entire elastic medium
is rotating with uniform angular velocity. The nature of the magneto-elastic waves in a rotating medium has
been considered by Roy Choudhuri and Debnath (1983b).

In the present work we shall present the normal mode analysis to two-dimensional problems of gene-
ralized thermo-elasticity with two relaxation times under the effect of rotation in the context of the line-
arized theory of Green and Lindsay. The resulting formulation is applied to two concrete problems. The
exact expressions for temperature, displacement and stress are obtained for the two problems considered.

2. Formulation of the problem

We consider an infinite isotropic, homogeneous, thermally conducting elastic medium. The medium is
rotating uniformly with an angular velocity = Qn, where n is a unit vector representing the direction of
the axis of rotation. The displacement equation of motion in the rotating frame of reference has two
additional terms (Schoenberg and Censor, 1973):

(i) Centripetal acceleration Q A (2 Au) due to the time-varying motion only;
(i) The Coriolis acceleration 2 A u.

Here u is the dynamic displacement vector measured from a steady state deformed position and assumed
to be small. These two terms do not appear in the equations for non-rotating media.

The fundamental equations of the generalized thermo-elasticity:

The constitutive law for the theory of generalized thermo-elasticity

0y = Jedy + 2ue; — (T — Ty +vT)dy. (1)
The heat conduction equation

kT = pCu(T +17) + yTyé. 2)
The strain-displacement constitutive relations

& = 3wy +u;) and & =e = uy, (3)
The equations of motion, in the absence of body forces, are

oy, = pli + {Q AN (LAWY}, + (2QAw),]. (4)

Combining Egs. (1), (3) and (4), we obtain the displacement equation of motion in the rotating frame of
reference as

pli+{QA(QAW}+ (2QAW)] = (A + ) V(V -u) + uV2u— yV[T +vT]. (5)
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From Egs. (1) and (3) the stress components are given by

=A+20uy+ v, — (T — T, + vT), (6)
=A+2u)v, + Ju, —y(T— T, + vT), (7)
Oy = ,u(u,y + U,x)> (8)
0. = e — (T — T, +vT). 9)
From Egs. (4) and (6)—(9), we get
%u ) Oe 5 0\ oT
[F—Qu—ZQv] (/l—i-u)a—x—k,uVu—y(l—kva)a— (10)
62 2 a 2 a aT
|:¥—QU+2QM:|—( +u )6 +,qu—y<l+v§>a. (11)

For convenience, the following non-dimensional quantities are introduced:

r_ r_ /2 r_ 2 r__ 2 /
xj - corloxja Mj - 007’]0”]‘, t = CJIo@ T = C'OV]OT, Vv = 60170‘)7 Q= 027] )
o'lo

g =T) oy (12)
A4+2u Yoo
In order to examine the effect of rotation and relaxation time on coupled elastic dilatational, shear and
thermal waves, we get Q = (0,0, Q), u = (u(x,,t),v(x,»,1),0), where Q is a constant.
In terms of the non-dimensional quantities defined in Eq. (12), the above governing equations reduce to
(dropping the dashes for convenience)

0%u ) 2, o0 0?0
% Oe o0 0%0
= — QP 42Qu| = (- 1) —+ V- —+v— 14
ﬁ[aﬂ v+2Qu| = (f )ay+Vv B 6y+v6t6y , (14)
o0 %0 Oe
20 (Y e
VQ—(at—i- " )+86t (15)
and the components of the stress are
Ou = 2u + (B = 2)e — BA(0+10), (16)
0y = (B —2)e +2v, — (0 + v0), (17)
Oy = Uy + Uy, (18)
0z = (B = 2)e — (0 +0). (19)

In the subsequent analysis we are taking into consideration the case of low speed so that centrifugal
stiffening effects can be neglected. By differentiating Eq. (13) with respect to x, and Eq. (14) with respect to
v, then adding, we arrive at
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[ o? 0 o
P Qe=(1+v |VO+20. 20
_V 3z e v |V 4205 (20)
Differentiating Eq. (13) with respect to y, and Eq. (14) with respect to x, then subtracting, we arrive at
[ o? de
2 @2 2 2
— —_Q = 208> — 21
v () ]i- 20T o)
where V? = % + (.;—27 is Laplace’s operator in a two-dimensional space and { = g—;‘ -&

3. Normal mode analysis

The solution of the considered physical variable can be decomposed in terms of normal modes as the
following form

[, v,e,,0,0,](x,y,0) = [ (y),v"(v),e" (), ' ), 0" (v), o7,(v)] exp(wt + iax). (22)

where o is the (complex) time constant, i = v/—1 and «a is the wave number in the x-direction and u*(y),
v'(v), € (v), ' (»), 0°(v) and o7;(y) are the amplitude of the functions.
Using Eq. (22), we can obtain the following equations from Egs. (15), (20) and (21) respectively

D — & — (1 +1)]0" (v) = swe’(y), (23)
D* — & — o + Qe (y) = (1 +vo) (D? — a®)0 () + 2Qu(", (24)
D — @ = f (o = @)'(v) = -2 00, (25)

where, D = 2.
Eliminatin}g 0" (y) and (" (y) between Egs. (23)-(25), we get the following sixth-order partial differential
equation satisfied by e*(y)

(D° — a;D* 4 a,D* — a3)e* (y) = 0, (26)
where,
ay =3d* + by, (27)
ar = 3a* 4+ 2d%b, + b, (28)
as = a® + a*by + a’by + by, (29)
b, = ew; + wy + (ﬁz + 1) ws, (30)
by = ﬁz[wg + 0,03 + w03 + 40’ Q] + w03, (31)
by = fran(w? + 40’ Q?), (32)
o =o(l +vo), o =o(l+10), ;= (0"—Q), (33)

Eq. (26) can be factorized as
(D>~ B)(D* — B)(D* ~ K)e' () = 0, (34)
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where, k;, j =1,2,3 are the roots of the following characteristic equation
k6 — (11](4 + a2k2 — a3 = 0.

The solution of Eq. (34) is given by:

()= )

3
J=1

where ¢;(y) is the solution of the equation
(D~ K)e() =0, j=1.23.

The solution of Eq. (37), which is bounded as y — oo, is given by

&) = Gla.w)e .

Substituting from Eq.(38) into Eq. (36), we obtain:
3
e'(y) = Z G,(a,w)e™™.
=1

In a similar manner, we get

0°'(v) =) Ga, w)e Y,

~.
I w
_

3

C) =Y Gllaw)e™,

J=1

where G;(a, w), Gj(a,») and G}(a, ») are parameters depending on a, o.
Substituting from Egs. (39)—(41) into Egs. (23) and (25), we obtain

EQ
G S — =1,2,3
j(a7w) [k/z_az_w2] j(a7w)7 ./ (b ]
—20Qp
G!(a, ) = ] Gla,0), j=123

[ka' —a’— ﬁzwz]
Substituting from Egs. (42) and (43) into Egs. (40) and (41), respectively, we obtain
3
%)
) =Y ——>——G; ki
v) Z =@ oy @)
3 2
—2wQp
Co) =Y 2 G(a,w)e
; kK —a? — fos)
Since,

" = Du* — iav*,

e =iau" + Dv*.
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In order to obtain the displacement u, in terms of Eq. (22), from Egs. (13), (14), (46) and (47) we can obtain

. 20Qp%k;
=B a}+ J
e Z _ aZ [ [ 12 _az _ ﬁ2w3]

G,(a,w)e™, (48)

3 . 2

. 1 2lawQp
v*(y) = —iBe®” — E ki —
= (kf —a®) |7 [k} — a? — ;]

where B = 0 to make Egs. (48) and (49) are bounded as y — cc.
In terms of Eq. (22), substituting from Eqgs. (39), (44), (45), (48) and (49) into Egs. (16)—(19), respectively,
we obtain the stress components in the form

Gj(a, w)e_kfy, (49)

: = 3 2 i 2wQﬁ2k/ 8601/32 —kjy
=3 {ﬁ” k- Fal P -l }Gje . (50
3 _41aa)Q,8 k 2](]2 8601,82 i
/Z{ﬁﬂg Tl B-d-o) G, (51)
)= -3 2008 (k} + a’) diak, iy
ny(y) = _; { (ka _ az)[ka = 52603] + (k/z — &) }Gje , (52)

- s f° —kjy
}:{ azwﬂ}cﬂ . (53)

/

The normal mode analysis is, in fact, to look for the solution in Fourier transformed domain. This
assumes that all the field quantities are sufficiently smooth on the real line such that the normal mode
analysis of these functions exist.

4. Applications
Problem I. A plate subjected to time-dependent heat sources on both sides (Sherief and Anwar, 1986).

We shall consider a homogeneous isotropic thermo-elastic infinite conductive thick flat plate of a finite
thickness 2L occupying the region G given by:
G={(x,y,z)] —oo <x < o0,-LLy<L,—00 <z <0},
with the middle surface of the plate coinciding with the plane y = 0.
The boundary conditions of the problem are taken as:

(1) The thermal boundary condition
qn+ho0 =r(x,t) ony==L (54)

where ¢, denotes the normal component of the heat flux vector, %, is Biot’s number and r»(x, ¢) rep-
resents the intensity of the applied heat sources.
(i) The normal and tangential stress components are zero on both surfaces of the plate; thus,

o,=0 ony==L, (55)

oy, =0 ony==L (56)
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Egs. (55) and (56) in the normal mode form together with Eqgs. (51) and (52) respectively give:
S1Gy cosh(kiL) + S,G, cosh(kyL) 4+ S3G5 cosh(k;L) = 0, (57)

NGy sinh(le) + N>G, Sil’lh(kzL) + N3G3 Sil’lh(k3L) =0. (58)

We now make use of the generalized Fourier’s law of heat conduction in the non-dimensional form,
namely,

dq, 00
Gt T o= (59)
In terms of Eq. (22), from Eq. (59), we obtain
1 00"
e 60
qn (1 + T(,U) an ( )
Combining Egs. (44), (59) and (60) we arrive at
A1 Gy cosh(kiL) + A,G, cosh(k,L) + A3G; cosh(ksL) = r* (1 + tw), (61)
where,
A; =22 [—k;sinh(k,L) + ho(1 + 1) cosh(k,L)], /= 1,2,3, (62)
9
O‘j:[kj%_a2_w2]a ﬁj: [kf—a2—ﬂ2a)3], ]: 132333 (63)
Sj:(ajl_i jl)v j:172737 (64)
]vf:(“j2+iﬁj2)7 j:172737 (65)
2k? e B
N ) ;7 i=1,2 66
a.ll ﬁ +(ka_a2) aj b ] bl 733 ( )
dawQpf’k;
ﬁj]zija ]:152737 (67)
B;
20QB (k2 + a?)
Up=—3—5—, j=12,3, (68)
’ (k —a*)B;
Zak]
ﬁ] (ka _ az) Y ] ) )3 ( )
Egs. (57), (58) and (61) can be solved for the three unknowns G;, G, and Gj.
(1 + tw)r* .
G, = MAL + Inds) +1(ady — A 45)], 70
! sa)(Af + A%) cosh(k L) (1 242) +i(Aady 142)] (70)
_ Tt dady) + (e — da )] (71)
2_(Af—|—A§)cosh(k1L) 34y + 244 44y — 2342)],
(1 +tw)r* .
G; = [()»5A1 + }vél‘z) + 1(/16A1 — )»5A2)], (72)

(4% 4 43) cosh(k L)
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A = (021032 + B B3) tanh(ksL) — (o31022 + B3, Bay) tanh(ka L), (73)
Ao = (02183, — 032, ) tanh (ks L) — (03182 — 02283;) tanh(k, L), (74)
Js = {’““” - kzo‘”} tanh(kyL) tanh(ksL) + ho(1 + 100) {@ tanh(k;L) — 22 tanh(kzL)} , (75)
o3 olp 25} o3
Jg = {]{3—&2 - kz—ﬁu} tanh(k,L) tanh(k;L) + ho (1 + o) [& tanh(ksL) — Pn tanh(kzL)} , (76)
o3 0l [2%] o3
Js = ka1 tanh(ksL) — kot tanh(kyL) + ho(1 + Tw) (ﬁ — @) , (77)
o3 o o2 o3
76 = 2P Gann(ion) — P2 Ganh( L) + (1 + 1) (@ _ &) ’ 78)
ol o3 o1 o2
A
Al = O(_l [—kl tanh(le) + ho(l + ‘E(U)] — %11/13 —+ 0612/15 tanh(le) — ﬁ11/14 — ﬁlzﬂvé tanh(le), (79)
1
Az = % [7](1 tanh(le) + ho(l + TCU)] — 0611/14 + 0612/16 tanh(le) + ﬁ”}g + ﬁ|2)~5 tanh(le). (80)
1

Problem II. A time-dependent heat punch across the surface of semi-infinite thermo-elastic half space
(Nowacki, 1975).

We consider a homogeneous isotropic thermo-elastic solid occupying the region G* given by G* =
{(x,y,2)] —00 <x < 00,0<y, —00 <z < 0}

In the physical problem, we should suppress the positive exponentials that are unbounded at infinity.

The constants G|, G; and Gj have to be chosen such that the boundary conditions on the surface y =0
take the form

O(x,y,t) = n(x,t) ony=0, (81)
Gw(xaya t)=P(x,t) ony=0, (82)
oy(x,y,t) =0 ony=0, (83)

where n, P are given functions of x and ¢.
Eqgs. (81)—(83) in the normal mode form together with Egs. (44), (51) and (52) respectively, give

LG + LG, + LG} = n'(a, w), (84)

S$1G] + $G; + 853G = P*(a, w), (85)

NG} + N,G; + N;G; = 0. (86)
Eqgs. (84)—(86) can be solved for the three unknowns Gj, G; and G5 one obtains

Gy = (s + Jsdhs) + i s — 7)), (87)

(43 + 43)
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1

G, = m [(Aod3 4 Z104s) + (41043 — Ao ds)], (88)
G, = m (21143 4 A2 Aa) + i(Ands — A Ad)], (89)
sz%, =123, (90)
Jq = n* (om0 + Py B3y — 03100 — P31 Brn) — P (Laozy — Lyom), o1
Ay = n" (02130 — 32y + 02 fy) — 03182) — P*(Laf3y — Lafr), (92)
do = P (Lyozy — L3onz) — n* (1032 + By Byn — 231012 — By Bra)s (93)
Ao = P (L1 B3y — LaPy) — n" (a1 Byy — a2y + a12fa — @31 Bia), (94)
dar = n" (om0 + Biy oy — w210z — B Bra) — P (Lioay — Loounn), (95)
Az = 1" (o1 By — 2By — 021 Biy + 02fy) — P(Li By — Lafra), (96)
A3 = Li(om10m + Py fry — a31002 — P31 ) — Lo(onro2 — Bry sy — o102 — B3y Bra)

+ L3 (01022 + P11 oy — 021012 — oy o), (97)

Ay = Ly (02130 — 3201 + 0231 — 03185) — La(oui Byn — 032811 + 212fay — 231 B12)
+ L3011 — 021y — 021 B1a + 212fa1)- (98)

5. Numerical results

The copper material was chosen for the purpose of numerical evaluations. Since we have w = w, + i,
where 1’ is imaginary unit, e = e”’(cos {¢ + isin{¢) and for small values of time, we can take w = w, (real).
The numerical constants of the problems were taken as: ¢ = 0.0168, ﬁ2 =3.5,p=28954,7=0.02,v=0.03,
w,=1,a=12, h, =50, ¥ =1, P* =100, n* = 50. The computations were carried out for two values of
time ¢t = 0.1 and ¢ = 0.3. The numerical techniques, outlined above, and used for the real part of 6(x, y,?)
and u(x, y, ) were calculated on the surface y = 2 and on the middle plane y = 0 for problem I, where L = 4,
while for problem II on y = 6 for two different values of 2 = 0 and Q2 = 0.01. The results are shown in Figs.
1-12. The graph shows the four curves predicted by different theories of thermo-elasticity. In these figures,
the dashed lines represent the solution corresponding to using the Coupled Theory (CD) of heat conduction
(t =0,v =0), the solid lines represent the solution for G-L theory (t = 0.02,v = 0.03). It can be seen from
these figures that the rotation acts to decrease the magnitude of the real part of the temperature and in-
crease the magnitude of the real part of the displacement. We notice also, that results for the temperature
when the relaxation time appears in the heat equation are distinctly different from those the relaxation time
is not mentioned in the equation of motion and heat equation. This is due to the fact that thermal waves in
the Fourier theory of heat equation travel with an infinite speed of propagation as opposed to finite speed in
the non-Fourier case. This demonstrates clearly the difference between the coupled and the generalized



M.I A. Othman | International Journal of Solids and Structures 41 (2004) 2939-2956 2949

Generalized G-L

0
000147 Coupled ---------

Fig. 1. Temperature distribution 6 on the surface of problem I at Q = 0.01.

0
0.0016 4 Generalized G-L
! \ Coupled ---------

Fig. 2. Temperature distribution 0 on the surface of problem I at Q = 0.

theories of thermo-elasticity. It is clear from Figs. 1-12 the effect of the rotation on the field quantities in the
two specific problems.
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0
0.00012 +

Generalized G-L
Coupled ---------

0.00002 -

JX

-1.5 -1 -0.5 0 0.5 1 1.5

Fig. 3. Temperature distribution 6 on the middle plane of problem I at Q = 0.01.

0
0.00014 -

Generalized G-L
Coupled ---------

0.00004 -

0.00002 -

J X

-1.5 -1 -0.5 0 0.5 1 1.5

Fig. 4. Temperature distribution 6 on the middle plane of problem I at Q = 0.
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Generalized G-L
Coupled ---------

-0.2 +

-0.3 +

0.4 -

-0.5 -

t=03

Fig. 5. Displacement distribution u on the surface of problem I at Q = 0.01.

Generalized G-L
Coupled ---------

-0.005 -

Fig. 6. Displacement distribution u on the surface of problem I at Q = 0.
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u
0.5 -
Generalized G-L
Coupled ----------
L ) . N
3 1 5 5
-0.1 4
\
024 W /
\ I
\ 1)
AR )
\\W=0.1 7
-0.3 A NN //
W\ "/
\ G
0.4 N
t=03
-0.5 -

Generalized G-L
Coupled

-1.5

Fig. 8. Displacement distribution « on the middle plane of problem I at Q@ = 0.



M.IA. Othman | International Journal of Solids and Structures 41 (2004) 2939-2956

Generalized G-L
Coupled ---------

-1.5

t=03

Fig. 9. Temperature distribution 0 for y = 6 of problem II at Q = 0.01.

Generalized G-L
Coupled ~=77777"~

0.001

L 1 1 C
-1.5 -1 -05
-0.001

-0.002

-0.003

-0.004

-0.005

-0.006

-0.007 - t=03

Fig. 10. Temperature distribution 6 for y = 6 of problem II at Q = 0.
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u
0.032 ~

0.024

0.016 -

0.008 -

Generalized G-L
Coupled ----------

-0.032 -

Fig. 11. Displacement distribution u for y = 6 of problem II at Q = 0.01.

N t=03
0.028 ~
R N
0.021 A —
t=01
0.014 -
0.007 A
L . . o ) . .
-3 -2 1 p 3 .
-0.00/ 4
-0/014 4
4 Generalized G-L
o= 0.021 A
Coupled ----------
Nt
-0.028 -

Fig. 12. Displacement distribution u for y = 6 of problem II at Q = 0.
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6. Concluding remarks

Due to the complicated nature of the governing equations for generalized thermo-elasticity, with two
relaxation times, few attempts have been made to solve problems in this field read (Nowacki,
1975). These attempts utilized an approximate method that is valid only for a specific range of some
parameters.

In this work the method of normal mode analysis is introduced in the field of thermo-elasticity and
applied to two specific problems in which the temperature, displacement and stress are coupled. This
method gives exact solutions without any assumed restrictions on temperature, displacement and stress
distributions.

The normal mode analysis is applied to a wide range of problems in different branches as that shown in
(Ezzat and Othman, 2000; Othman, 2002). It can be applied to boundary-layer problems, which are de-
scribed by the linearized Navier-Stokes equations in hydrodynamics as that shown in (Othman, 2001;
Othman and Ezzat, 2001; Othman and Sweilam, 2002).
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