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Abstract

The model of generalized thermo-elastic plane waves under the effect of rotation is studied using the theory of

thermo-elasticity recently proposed by Green and Lindsay. The normal mode analysis is used to obtain the exact

expressions for the temperature distribution, the displacement component and thermal stress. The resulting formulation

is applied to two different concrete problems. The first deals with a thick plate subjected to a time-dependent heat source

on each face. The second concerns the case of a heated punch moving across the surface of a semi-infinite thermo-elastic

half-space subject to appropriate boundary conditions. Numerical results are given and illustrated graphically for each

problem. Comparisons are made with the results predicted by the coupled theory and with the theory of generalized

thermo-elasticity with two relaxation times in the absence of rotation.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years considerable interest has been shown in the study of plane thermo-elastic wave propa-

gation in a non-rotating medium. The classical theory of thermo-elasticity is based on Fourier�s law of heat

conduction, which predicts an infinite speed of propagation of heat. This is physically absurd and many

new theories have been proposed to eliminate this absurdity.

Two generalizations to the coupled theory were introduced. The first is due to Lord and Shulman (1967),
who obtained a wave-type heat equation by postulating a new law of heat conduction to replace the

classical Fourier�s law. This new law contains the heat flux vector as well as its time derivative. It also

contains a new constant that acts as a relaxation time. Since the heat equation of this theory is of the wave

type, it automatically ensures finite speeds of propagation for heat and elastic waves. The remaining

governing equations for this theory, namely, the equations of motions and constitutive relations, remain the
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Nomenclature

k, l Lame�s constants
q density

CE specific heat at constant strain

t time

T absolute temperature

To reference temperature chosen so that
T � To
To

����
���� � 1

rij components of stress tensor

eij components of strain tensor
ui components of displacement vector

X the rotation

k thermal conductivity

c2o
kþ 2l

q

c2

ffiffiffi
l
q

r
velocity of transverse waves

b2 kþ 2l
l

s, m two relaxation times

e
�
ou
ox

�
þ
�
ov
oy

�
, the dilatation

at coefficient of linear thermal expansion

c ð3kþ 2lÞat
e c2To=qCEðkþ 2lÞ
go qCE=k

2940 M.I.A. Othman / International Journal of Solids and Structures 41 (2004) 2939–2956
same as those for the coupled and the uncoupled theories. This theory was extended by Dhaliwal and

Sherief (1980) to general anisotropic media in the presence of heat sources. Sherief and Dhaliwal (1981)

solved a thermal shock problem. Both these problems are valid for short times. Recently, Sherief and Ezzat

(1994) obtained the fundamental solution for this theory that is valid for all times.

The second generalization to the coupled theory of thermo-elasticity is what is known as the theory of
thermo-elasticity with two relaxation times or the theory of temperature-rate-dependent thermo-elasticity.

M€uller (1971), in review of the thermo-dynamics of thermo-elastic solids, proposed an entropy production

inequality, with the help of which he considered restrictions on a class of constitutive equations.

A generalization of this inequality was proposed by Green and Laws (1972). Green and Lindsay (1972)

obtained an explicit version of the constitutive equations. These equations were also obtained indepen-

dently by S�uhubi (1975). This theory contains two constants that act as relaxation times and modifies all the

equations of the coupled theory, not only the heat equation. The classical Fourier�s law of heat conduction

is not violated if the medium under consideration has a center of symmetry. Erbay and S�uhubi (1986)
studied wave propagation in finite cylinders. Ignaczak (1985) studied a strong discontinuity wave and

obtained a decomposition theorem for this theory (Ignaczak, 1978). Dhaliwal and Rokne (1989) solved a

thermal shock problem.

Using the Green–Lindsay theory, Agarwal (1979a,b) studied respectively thermo-elastic and magneto-

thermo-elastic plane wave propagation in an infinite non-rotating medium. In a paper by Schoenberg and
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Censor (1973), the propagation of plane harmonic waves in a rotating elastic medium without a thermal

field has been studied. It was shown there that the rotation causes the elastic medium to be dispersive and

an isotropic. Ezzat and Othman (2000) have established the model of the two-dimensional equations of

generalized magneto-thermo-elasticity with two relaxation times in a perfect conducting medium without
rotation.

It appears that little attention has been paid to the study of propagation of plane thermo-elastic waves in

a rotating medium. Since most large bodies like the earth, the moon and other planets have an angular

velocity it appears more realistic to study the propagation of plane thermo-elastic or magneto-thermo-

elastic waves in a rotating medium with thermal relaxation. Using the Lord-Shulman theory, Roy

Choudhuri and Debnath (1983a) studied the propagation of plane harmonic waves in an infinite con-

ducting thermo-elastic solid permeated by a primary uniform magnetic field when the entire elastic medium

is rotating with uniform angular velocity. The nature of the magneto-elastic waves in a rotating medium has
been considered by Roy Choudhuri and Debnath (1983b).

In the present work we shall present the normal mode analysis to two-dimensional problems of gene-

ralized thermo-elasticity with two relaxation times under the effect of rotation in the context of the line-

arized theory of Green and Lindsay. The resulting formulation is applied to two concrete problems. The

exact expressions for temperature, displacement and stress are obtained for the two problems considered.
2. Formulation of the problem

We consider an infinite isotropic, homogeneous, thermally conducting elastic medium. The medium is

rotating uniformly with an angular velocity X ¼ Xn, where n is a unit vector representing the direction of

the axis of rotation. The displacement equation of motion in the rotating frame of reference has two

additional terms (Schoenberg and Censor, 1973):

i(i) Centripetal acceleration X ^ ðX ^ uÞ due to the time-varying motion only;

(ii) The Coriolis acceleration 2X ^ _u.

Here u is the dynamic displacement vector measured from a steady state deformed position and assumed

to be small. These two terms do not appear in the equations for non-rotating media.

The fundamental equations of the generalized thermo-elasticity:

The constitutive law for the theory of generalized thermo-elasticity
rij ¼ kedij þ 2leij � cðT � To þ m _T Þdij: ð1Þ

The heat conduction equation
kT;ii ¼ qCEð _T þ s€T Þ þ cTo _e: ð2Þ

The strain-displacement constitutive relations
eij ¼ 1
2
ðui;j þ uj;iÞ and eii ¼ e ¼ ui;i: ð3Þ
The equations of motion, in the absence of body forces, are
rij;j ¼ q½€ui þ fX ^ ðX ^ uÞgi þ ð2X ^ _uÞi�: ð4Þ

Combining Eqs. (1), (3) and (4), we obtain the displacement equation of motion in the rotating frame of

reference as
q½€uþ fX ^ ðX ^ uÞg þ ð2X ^ _uÞ� ¼ ðkþ lÞrðr � uÞ þ lr2u� cr½T þ m _T �: ð5Þ
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From Eqs. (1) and (3) the stress components are given by
rxx ¼ ðkþ 2lÞu;x þ kv;y � cðT � To þ m _T Þ; ð6Þ

ryy ¼ ðkþ 2lÞv;y þ ku;x � cðT � To þ m _T Þ; ð7Þ

rxy ¼ lðu;y þ v;xÞ; ð8Þ

rzz ¼ ke� cðT � To þ m _T Þ: ð9Þ

From Eqs. (4) and (6)–(9), we get
q
o2u
ot2

�
� X2u� 2X _v

�
¼ ðkþ lÞ oe

ox
þ lr2u� c 1

�
þ m

o

ot

�
oT
ox

; ð10Þ

q
o2v
ot2

�
� X2vþ 2X _u

�
¼ ðkþ lÞ oe

oy
þ lr2v� c 1

�
þ m

o

ot

�
oT
oy

: ð11Þ
For convenience, the following non-dimensional quantities are introduced:
x0j ¼ cogoxj; u0j ¼ cogouj; t0 ¼ c2ogot; s0 ¼ c2ogos; m0 ¼ c2ogom; X0 ¼ X
c2ogo

;

h ¼ cðT � ToÞ
kþ 2l

; r0
ij ¼

rij

l
: ð12Þ
In order to examine the effect of rotation and relaxation time on coupled elastic dilatational, shear and

thermal waves, we get X ¼ ð0; 0;XÞ, u ¼ ðuðx; y; tÞ; vðx; y; tÞ; 0Þ, where X is a constant.

In terms of the non-dimensional quantities defined in Eq. (12), the above governing equations reduce to

(dropping the dashes for convenience)
b2 o2u
ot2

�
� X2u� 2X _v

�
¼ ðb2 � 1Þ oe

ox
þr2u� b2 oh

ox

�
þ m

o2h
otox

�
; ð13Þ

b2 o2v
ot2

�
� X2vþ 2X _u

�
¼ ðb2 � 1Þ oe

oy
þr2v� b2 oh

oy

�
þ m

o2h
otoy

�
; ð14Þ

r2h ¼ oh
ot

�
þ s

o2h
ot2

�
þ e

oe
ot

ð15Þ
and the components of the stress are
rxx ¼ 2u;x þ ðb2 � 2Þe� b2ðhþ m _hÞ; ð16Þ

ryy ¼ ðb2 � 2Þeþ 2v;y � b2ðhþ m _hÞ; ð17Þ

rxy ¼ u;y þ v;x; ð18Þ

rzz ¼ ðb2 � 2Þe� b2ðhþ m _hÞ: ð19Þ

In the subsequent analysis we are taking into consideration the case of low speed so that centrifugal

stiffening effects can be neglected. By differentiating Eq. (13) with respect to x, and Eq. (14) with respect to

y, then adding, we arrive at
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r2

�
� o2

ot2
þ X2

�
e ¼ 1

�
þ m

o

ot

�
r2hþ 2X

of
ot

: ð20Þ
Differentiating Eq. (13) with respect to y, and Eq. (14) with respect to x, then subtracting, we arrive at
r2

�
� b2 o2

ot2

�
� X2

��
f ¼ �2Xb2 oe

ot
; ð21Þ
where r2 ¼ o2

ox2 þ o2

oy2 is Laplace�s operator in a two-dimensional space and f ¼ ou
oy � ov

ox.
3. Normal mode analysis

The solution of the considered physical variable can be decomposed in terms of normal modes as the

following form
½u; v; e; f; h; rij�ðx; y; tÞ ¼ ½u�ðyÞ; v�ðyÞ; e�ðyÞ; f�ðyÞ; h�ðyÞ; r�
ijðyÞ� expðxt þ iaxÞ: ð22Þ
where x is the (complex) time constant, i ¼
ffiffiffiffiffiffiffi
�1

p
and a is the wave number in the x-direction and u�ðyÞ,

v�ðyÞ, e�ðyÞ, f�ðyÞ, h�ðyÞ and r�
ijðyÞ are the amplitude of the functions.

Using Eq. (22), we can obtain the following equations from Eqs. (15), (20) and (21) respectively
½D2 � a2 � xð1þ sxÞ�h�ðyÞ ¼ exe�ðyÞ; ð23Þ

½D2 � a2 � x2 þ X2�e�ðyÞ ¼ ð1þ mxÞðD2 � a2Þh�ðyÞ þ 2Xxf�; ð24Þ

½D2 � a2 � b2ðx2 � X2Þ�f�ðyÞ ¼ �2b2xXe�; ð25Þ

where, D ¼ o

oy.
Eliminating h�ðyÞ and f�ðyÞ between Eqs. (23)–(25), we get the following sixth-order partial differential

equation satisfied by e�ðyÞ

ðD6 � a1D4 þ a2D2 � a3Þe�ðyÞ ¼ 0; ð26Þ
where,
a1 ¼ 3a2 þ b1; ð27Þ

a2 ¼ 3a4 þ 2a2b1 þ b2; ð28Þ

a3 ¼ a6 þ a4b1 þ a2b2 þ b3; ð29Þ

b1 ¼ ex1 þ x2 þ ðb2 þ 1Þx3; ð30Þ

b2 ¼ b2½x2
3 þ x2x3 þ ex1x3 þ 4x2X2� þ x2x3; ð31Þ

b3 ¼ b2x2ðx2
3 þ 4x2X2Þ; ð32Þ

x1 ¼ xð1þ mxÞ; x2 ¼ xð1þ sxÞ; x3 ¼ ðx2 � X2Þ; ð33Þ

Eq. (26) can be factorized as
ðD2 � k21ÞðD2 � k22ÞðD2 � k23Þe�ðyÞ ¼ 0; ð34Þ
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where, kj, j ¼ 1; 2; 3 are the roots of the following characteristic equation
k6 � a1k4 þ a2k2 � a3 ¼ 0: ð35Þ
The solution of Eq. (34) is given by:
e�ðyÞ ¼
X3

j¼1

e�j ðyÞ; ð36Þ
where e�j ðyÞ is the solution of the equation
ðD2 � k2j Þe�j ðyÞ ¼ 0; j ¼ 1; 2; 3: ð37Þ
The solution of Eq. (37), which is bounded as y ! 1, is given by
e�j ðyÞ ¼ Gjða;xÞe�kjy : ð38Þ
Substituting from Eq.(38) into Eq. (36), we obtain:
e�ðyÞ ¼
X3

j¼1

Gjða;xÞe�kjy : ð39Þ
In a similar manner, we get
h�ðyÞ ¼
X3

j¼1

G0
jða;xÞe�kjy ; ð40Þ

f�ðyÞ ¼
X3

j¼1

G00
j ða;xÞe�kjy ; ð41Þ
where Gjða;xÞ, G0
jða;xÞ and G00

j ða;xÞ are parameters depending on a, x.
Substituting from Eqs. (39)–(41) into Eqs. (23) and (25), we obtain
G0
jða;xÞ ¼

ex
½k2j � a2 � x2�

Gjða;xÞ; j ¼ 1; 2; 3; ð42Þ

G00
j ða;xÞ ¼

�2xXb2

½k2j � a2 � b2x3�
Gjða;xÞ; j ¼ 1; 2; 3: ð43Þ
Substituting from Eqs. (42) and (43) into Eqs. (40) and (41), respectively, we obtain
h�ðyÞ ¼
X3

j¼1

ex
½k2j � a2 � x2�

Gjða;xÞe�kjy ; ð44Þ

f�ðyÞ ¼
X3

j¼1

�2xXb2

½k2j � a2 � b2x3�
Gjða;xÞe�kjy : ð45Þ
Since,
f� ¼ Du� � iav�; ð46Þ

e� ¼ iau� þ Dv�: ð47Þ
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In order to obtain the displacement u, in terms of Eq. (22), from Eqs. (13), (14), (46) and (47) we can obtain
u�ðyÞ ¼ Beay þ
X3

j¼1

1

ðk2j � a2Þ ia

"
þ 2xXb2kj
½k2j � a2 � b2x3�

#
Gjða;xÞe�kjy ; ð48Þ

v�ðyÞ ¼ �iBeay �
X3

j¼1

1

ðk2j � a2Þ kj

"
� 2iaxXb2

½k2j � a2 � b2x3�

#
Gjða;xÞe�kjy ; ð49Þ
where B ¼ 0 to make Eqs. (48) and (49) are bounded as y ! 1.

In terms of Eq. (22), substituting from Eqs. (39), (44), (45), (48) and (49) into Eqs. (16)–(19), respectively,

we obtain the stress components in the form
r�
xxðyÞ ¼

X3

j¼1

�2a2

ðk2j � a2Þ

(
þ 2ia

2xXb2kj
ðk2j � a2Þ½k2j � a2 � b2x3�

"
þ b2 � 2� ex1b

2

½k2j � a2 � x2�

#)
Gje�kjy ; ð50Þ

r�
yyðyÞ ¼

X3

j¼1

�4iaxXb2kj
½k2j � a2 � b2x3�

(
þ b2 � 2þ

2k2j
ðk2j � a2Þ �

ex1b
2

½k2j � a2 � x2�

)
Gje�kjy ; ð51Þ

r�
xyðyÞ ¼ �

X3

j¼1

2xXb2ðk2j þ a2Þ
ðk2j � a2Þ½k2j � a2 � b2x3�

(
þ 2iakj
ðk2j � a2Þ

)
Gje�kjy ; ð52Þ

r�
zzðyÞ ¼

X3

j¼1

b2

(
� 2� ex1b

2

½k2j � a2 � x2�

)
Gje�kjy : ð53Þ
The normal mode analysis is, in fact, to look for the solution in Fourier transformed domain. This

assumes that all the field quantities are sufficiently smooth on the real line such that the normal mode

analysis of these functions exist.
4. Applications

Problem I. A plate subjected to time-dependent heat sources on both sides (Sherief and Anwar, 1986).

We shall consider a homogeneous isotropic thermo-elastic infinite conductive thick flat plate of a finite

thickness 2L occupying the region G given by:
G ¼ fðx; y; zÞj �1 < x < 1;�L6 y6 L;�1 < z < 1g;

with the middle surface of the plate coinciding with the plane y ¼ 0.

The boundary conditions of the problem are taken as:

i(i) The thermal boundary condition
qn

ryy

rx
þ hoh ¼ rðx; tÞ on y ¼ �L; ð54Þ

where qn denotes the normal component of the heat flux vector, ho is Biot�s number and rðx; tÞ rep-

resents the intensity of the applied heat sources.
(ii) The normal and tangential stress components are zero on both surfaces of the plate; thus,
¼ 0 on y ¼ �L; ð55Þ

y ¼ 0 on y ¼ �L: ð56Þ
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Eqs. (55) and (56) in the normal mode form together with Eqs. (51) and (52) respectively give:
S1G1 coshðk1LÞ þ S2G2 coshðk2LÞ þ S3G3 coshðk3LÞ ¼ 0; ð57Þ

N1G1 sinhðk1LÞ þ N2G2 sinhðk2LÞ þ N3G3 sinhðk3LÞ ¼ 0: ð58Þ

We now make use of the generalized Fourier�s law of heat conduction in the non-dimensional form,

namely,
qn þ s
oqn
ot

¼ � oh
on

: ð59Þ
In terms of Eq. (22), from Eq. (59), we obtain
q�n ¼ � 1

ð1þ sxÞ
oh�

on
: ð60Þ
Combining Eqs. (44), (59) and (60) we arrive at
A1G1 coshðk1LÞ þ A2G2 coshðk2LÞ þ A3G3 coshðk3LÞ ¼ r�ð1þ sxÞ; ð61Þ

where,
Aj ¼
ex
aj

½�kj sinhðkjLÞ þ hoð1þ sxÞ coshðkjLÞ�; j ¼ 1; 2; 3; ð62Þ

aj ¼ ½k2j � a2 � x2�; bj ¼ ½k2j � a2 � b2x3�; j ¼ 1; 2; 3; ð63Þ

Sj ¼ ðaj1 � ibj1Þ; j ¼ 1; 2; 3; ð64Þ

Nj ¼ ðaj2 þ ibj2Þ; j ¼ 1; 2; 3; ð65Þ

aj1 ¼ b2

"
� 2þ

2k2j
ðk2j � a2Þ �

ex1b
2

aj

#
; j ¼ 1; 2; 3; ð66Þ

bj1 ¼
4axXb2kj

bj
; j ¼ 1; 2; 3; ð67Þ

aj2 ¼
2xXb2ðk2j þ a2Þ

ðk2j � a2Þbj
; j ¼ 1; 2; 3; ð68Þ

bj2 ¼
2akj

ðk2j � a2Þ ; j ¼ 1; 2; 3: ð69Þ
Eqs. (57), (58) and (61) can be solved for the three unknowns G1, G2 and G3.
G1 ¼
ð1þ sxÞr�

exðD2
1 þ D2

2Þ coshðk1LÞ
½ðk1D1 þ k2D2Þ þ iðk2D1 � k1D2Þ�; ð70Þ

G2 ¼
�ð1þ sxÞr�

ðD2
1 þ D2

2Þ coshðk1LÞ
½ðk3D1 þ k4D2Þ þ iðk4D1 � k3D2Þ�; ð71Þ

G3 ¼
ð1þ sxÞr�

ðD2
1 þ D2

2Þ coshðk1LÞ
½ðk5D1 þ k6D2Þ þ iðk6D1 � k5D2Þ�; ð72Þ
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k1 ¼ ða21a32 þ b21b32Þ tanhðk3LÞ � ða31a22 þ b31b22Þ tanhðk2LÞ; ð73Þ

k2 ¼ ða21b32 � a32b21Þ tanhðk3LÞ � ða31b22 � a22b31Þ tanhðk2LÞ; ð74Þ

k3 ¼
k3a22
a3

�
� k2a32

a2

�
tanhðk2LÞ tanhðk3LÞ þ hoð1þ sxÞ a32

a2
tanhðk3LÞ

�
� a22

a3
tanhðk2LÞ

�
; ð75Þ

k4 ¼
k3b22

a3

�
� k2b32

a2

�
tanhðk2LÞ tanhðk3LÞ þ hoð1þ sxÞ b32

a2
tanhðk3LÞ

�
� b22

a3
tanhðk2LÞ

�
; ð76Þ

k5 ¼
k3a21
a3

tanhðk3LÞ �
k2a31
a2

tanhðk2LÞ þ hoð1þ sxÞ a31
a2

�
� a21

a3

�
; ð77Þ

k6 ¼
k2b31

a2
tanhðk2LÞ �

k3b21

a3
tanhðk3LÞ þ hoð1þ sxÞ b21

a1

�
� b31

a2

�
; ð78Þ

D1 ¼
k1
a1

½�k1 tanhðk1LÞ þ hoð1þ sxÞ� � a11k3 þ a12k5 tanhðk1LÞ � b11k4 � b12k6 tanhðk1LÞ; ð79Þ

D2 ¼
k2
a1

½�k1 tanhðk1LÞ þ hoð1þ sxÞ� � a11k4 þ a12k6 tanhðk1LÞ þ b11k3 þ b12k5 tanhðk1LÞ: ð80Þ
Problem II. A time-dependent heat punch across the surface of semi-infinite thermo-elastic half space

(Nowacki, 1975).

We consider a homogeneous isotropic thermo-elastic solid occupying the region G� given by G� ¼
fðx; y; zÞj �1 < x < 1; 06 y;�1 < z < 1g.

In the physical problem, we should suppress the positive exponentials that are unbounded at infinity.

The constants G�
1, G

�
2 and G�

3 have to be chosen such that the boundary conditions on the surface y ¼ 0

take the form
hðx; y; tÞ ¼ nðx; tÞ on y ¼ 0; ð81Þ

ryyðx; y; tÞ ¼ P ðx; tÞ on y ¼ 0; ð82Þ

rxyðx; y; tÞ ¼ 0 on y ¼ 0; ð83Þ
where n, P are given functions of x and t.
Eqs. (81)–(83) in the normal mode form together with Eqs. (44), (51) and (52) respectively, give
L1G�
1 þ L2G�

2 þ L3G�
3 ¼ n�ða;xÞ; ð84Þ

S1G�
1 þ S2G�

2 þ S3G�
3 ¼ P �ða;xÞ; ð85Þ

N1G�
1 þ N2G�

2 þ N3G�
3 ¼ 0: ð86Þ
Eqs. (84)–(86) can be solved for the three unknowns G�
1, G

�
2 and G�

2 one obtains
G�
1 ¼

1

ðD2
3 þ D2

4Þ
½ðk7D3 þ k8D4Þ þ iðk8D3 � k7D4Þ�; ð87Þ
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G�
2 ¼

1

ðD2
3 þ D2

4Þ
½ðk9D3 þ k10D4Þ þ iðk10D3 � k9D4Þ�; ð88Þ

G�
3 ¼

1

ðD2
3 þ D2

4Þ
½ðk11D3 þ k12D4Þ þ iðk12D3 � k11D4Þ�; ð89Þ

Lj ¼
ex
aj

; j ¼ 1; 2; 3; ð90Þ

k7 ¼ n�ða21a32 þ b21b32 � a31a22 � b31b22Þ � P �ðL2a32 � L3a22Þ; ð91Þ

k8 ¼ n�ða21b32 � a32b21 þ a22b31 � a31b22Þ � P �ðL2b32 � L3b22Þ; ð92Þ

k9 ¼ P �ðL1a32 � L3a12Þ � n�ða11a32 þ b11b32 � a31a12 � b31b12Þ; ð93Þ

k10 ¼ P �ðL1b32 � L2b12Þ � n�ða11b32 � a32b11 þ a12b31 � a31b12Þ; ð94Þ

k11 ¼ n�ða11a22 þ b11b22 � a21a12 � b21b12Þ � P �ðL1a22 � L2a12Þ; ð95Þ

k12 ¼ n�ða11b22 � a22b11 � a21b12 þ a12b21Þ � P �ðL1b22 � L2b12Þ; ð96Þ

D3 ¼ L1ða21a32 þ b21b32 � a31a22 � b31b22Þ � L2ða11a32 � b11b32 � a31a12 � b31b12Þ
þ L3ða11a22 þ b11b22 � a21a12 � b21b12Þ; ð97Þ

D4 ¼ L1ða21b32 � a32b21 þ a22b31 � a31b22Þ � L2ða11b32 � a32b11 þ a12b31 � a31b12Þ
þ L3ða11b22 � a22b11 � a21b12 þ a12b21Þ: ð98Þ
5. Numerical results

The copper material was chosen for the purpose of numerical evaluations. Since we have x ¼ xo þ if,
where �i� is imaginary unit, ext ¼ exotðcos ft þ i sinftÞ and for small values of time, we can take x ¼ xo (real).

The numerical constants of the problems were taken as: e ¼ 0:0168, b2 ¼ 3:5, q ¼ 8954, s ¼ 0:02, m ¼ 0:03,
xo ¼ 1, a ¼ 1:2, ho ¼ 50, r� ¼ 1, P � ¼ 100, n� ¼ 50. The computations were carried out for two values of

time t ¼ 0:1 and t ¼ 0:3. The numerical techniques, outlined above, and used for the real part of hðx; y; tÞ
and uðx; y; tÞ were calculated on the surface y ¼ 2 and on the middle plane y ¼ 0 for problem I, where L ¼ 4,

while for problem II on y ¼ 6 for two different values of X ¼ 0 and X ¼ 0:01. The results are shown in Figs.
1–12. The graph shows the four curves predicted by different theories of thermo-elasticity. In these figures,

the dashed lines represent the solution corresponding to using the Coupled Theory (CD) of heat conduction

ðs ¼ 0; m ¼ 0Þ, the solid lines represent the solution for G–L theory ðs ¼ 0:02; m ¼ 0:03Þ. It can be seen from

these figures that the rotation acts to decrease the magnitude of the real part of the temperature and in-

crease the magnitude of the real part of the displacement. We notice also, that results for the temperature

when the relaxation time appears in the heat equation are distinctly different from those the relaxation time

is not mentioned in the equation of motion and heat equation. This is due to the fact that thermal waves in

the Fourier theory of heat equation travel with an infinite speed of propagation as opposed to finite speed in
the non-Fourier case. This demonstrates clearly the difference between the coupled and the generalized
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Fig. 1. Temperature distribution h on the surface of problem I at X ¼ 0:01.
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Fig. 2. Temperature distribution h on the surface of problem I at X ¼ 0.
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theories of thermo-elasticity. It is clear from Figs. 1–12 the effect of the rotation on the field quantities in the

two specific problems.
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Fig. 3. Temperature distribution h on the middle plane of problem I at X ¼ 0:01.
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Fig. 4. Temperature distribution h on the middle plane of problem I at X ¼ 0.
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Fig. 8. Displacement distribution u on the middle plane of problem I at X ¼ 0.
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Fig. 9. Temperature distribution h for y ¼ 6 of problem II at X ¼ 0:01.
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Fig. 10. Temperature distribution h for y ¼ 6 of problem II at X ¼ 0.
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6. Concluding remarks

Due to the complicated nature of the governing equations for generalized thermo-elasticity, with two

relaxation times, few attempts have been made to solve problems in this field read (Nowacki,
1975). These attempts utilized an approximate method that is valid only for a specific range of some

parameters.

In this work the method of normal mode analysis is introduced in the field of thermo-elasticity and

applied to two specific problems in which the temperature, displacement and stress are coupled. This

method gives exact solutions without any assumed restrictions on temperature, displacement and stress

distributions.

The normal mode analysis is applied to a wide range of problems in different branches as that shown in

(Ezzat and Othman, 2000; Othman, 2002). It can be applied to boundary-layer problems, which are de-
scribed by the linearized Navier–Stokes equations in hydrodynamics as that shown in (Othman, 2001;

Othman and Ezzat, 2001; Othman and Sweilam, 2002).
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